

nd) a d a e ea h e R d (REE) I e ed a e a d dee a e f  $\lambda$ e i d-R de (~40°S) S  $\lambda$  Pac c a RI a e d a R a ec be ed S  $\lambda$  A e ca a d Ne ZeaR d. T $\lambda$ e i a R f d al be e  $\lambda$   $\lambda$ e d b a d f a e a e  $\lambda$ e S  $\lambda$  Pac ca d è a Ra e  $\lambda$ e a R f d al be e  $\lambda$   $\lambda$ e d b a d f a e a e  $\lambda$ e S  $\lambda$ Pac ca d è a Ra e  $\lambda$ e a R f d e a a a e a a c i  $\lambda$  e e e f  $\lambda$ e cea . T $\lambda$ e è R de f a e  $\lambda$ a b e c $\lambda$ e i caRè cH (ca e f ce e  $\lambda$ e Ea e E a i a RPac c) a d e Ra e f LREE f  $\lambda$ e ed d cRa R f e ce  $\lambda$ e d b f  $\lambda$ e d R REE c cd a f a ce a R ca f . Ne e i  $\lambda$ e Nd e f a è cRa R ace a e a e c R d RAIW (A a c c f e ed a e Wa e) (a e a e  $\varepsilon_{Nd} = -8.2$  0.3), LCDW (L e C c i R Dee Wa e) (a e a e  $\varepsilon_{Nd} = -8.3$  0.3), NPDW (N  $\lambda$  Pac c Dee Wa e) (a e a e  $\varepsilon_{Nd} = -5.9$  0.3), a d  $\lambda$ e e f a f NADW (N  $\lambda$ i A R c Dee Wa e) (a e a e  $\varepsilon_{Nd} = -$ 

/ / /

<sup>\*</sup> C ecdaaTeR +49 431 600 2311.E-mail address:IRa- e c $\lambda$ eade(M. M R a-Ke c $\lambda$ e).

<sup>0016-7037/\$ -</sup> see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.gca.2013.11.038

The REE calbed ded he R  $\lambda$  REE (LREE) f La S,  $\lambda$ e M'ddR REE (MREE) f E D, a d  $\lambda$ e Hea REE (HREE) f H L. Y beha e 1 Ha R H beca e f  $\lambda$ e 1 H c ad (e. N, a, 2001). REE c cd a d d da R c e a c  $\lambda$  ac de  $\lambda$ , 1 H c, a ac e e d ce f a cR ca d  $\lambda$ e face a d ad a R e e a R af a cR, rad REE fac a c  $\lambda$ e d R a de e e a e c R a a f c f  $\lambda$ e f c ad (e. B e a d  $\lambda$ e ef e  $\lambda$ a e  $\lambda$  e e d ce e a c c f  $\lambda$ e a e i c R a a f c f  $\lambda$ e REE i c ad (e. B e a d  $\lambda$ e ef e  $\lambda$ a e  $\lambda$  e e d ce e a c c d (e. B e a d  $\lambda$ e ef e  $\lambda$ a e  $\lambda$  e e d ce e a c c a d  $\lambda$ e de  $\lambda$ . D ed a e a e a e a e d ce e a c a d e d ab R e REE c c d a d a be ed REE d e d f  $\lambda$ e

cc. Ra ae freACC(

(CaRad, 1972). H e e, laede a a e fUCDW

| TabRe 2 | 1.  |  |  |
|---------|-----|--|--|
|         | N N |  |  |

| REE C   Ce a      | ( i i ikik | , E /Na | a, Ce | ea la R | e (Ce/Ce     | = 2[Ce]      | /([La] + [I]) | ·)))a d | GEOIRA | ACESI | e teakb a    | ea           | e e       | (BAIS) 1 | ( <b>A</b> | a .          |      |               |                |
|-------------------|------------|---------|-------|---------|--------------|--------------|---------------|---------|--------|-------|--------------|--------------|-----------|----------|------------|--------------|------|---------------|----------------|
|                   | De 2       | Υ       | La    | Ce      | Р            | Nd           | Nd(ID)        | S       | E      | Gd    | Tb           | D            | Н         | E        | Т          | Yb           | L    | HREE/<br>LREE | / Ce<br>all aR |
|                   | ( )        | ( i K   | (i R  | (i R    | (.) <b>K</b> | (.) <b>R</b> | (.) <b>R</b>  | (L) R   | ( i K  | (i) R | (.) <b>K</b> | (.) <b>K</b> | ( <u></u> | (i R     | (i R       | (.) <b>R</b> | ()   | KR (E /       | Ce/Ce*         |
|                   |            | )       | )     | )       | )            | )            | )             | )       | )      | )     | )            | )            | )         | )        | )          | )            | )    | Nd)           |                |
| Sa                |            |         |       |         |              |              |               |         |        |       |              |              |           |          |            |              |      |               |                |
| S. 22(SO213-22-2) | 300        | 115     | 16.9  | 8.25    | 2.32         | 10.7         | 11.2          | 1.87    | 0.45   | 2.79  | 0.46         | 3.43         | 1.00      | 3.27     | 0.54       | 3.92         | 0.56 | 0.29          | 1.29           |
| 39°12'S, 79°55'W  | 650        | 107     | 15.6  | 5.84    | 2.36         | 10.6         | 10.4          | 1.71    | 0.45   | 2.36  | 0.43         | 3.86         | 1.14      | 4.02     | 0.59       | 4.24         | 0.71 | 0.39          | 0.65           |
| 4144 de a         | 1500       | 148     | 22.3  | 6.78    | 2.87         | 12.7         | 12.9          | 2.16    | 0.61   | 3.23  | 0.55         | 4.84         | 1.44      | 5.36     | 0.86       | 5.98         | 1.14 | 0.42          | 0.54           |
|                   | 2600       | 192     | 28.6  | 7.15    | 3.55         | 14.3         | 16.1          | 2.39    | 0.79   | 4.20  | 0.62         | 5.77         | 1.76      | 6.00     | 1.08       | 6.87         | 1.29 | 0.37          | 0.45           |
|                   | 4142       | 178     | 33.8  | 7.74    | 4.68         | 21.0         | 21.0          | 3.70    | 0.92   | 4.94  | 0.85         | 6.85         | 2.00      | 6.85     | 1.06       | 8.02         | 1.36 | 0.33          | 0.40           |
| S. 9(SO213-09-2)  | 750        | 110     | 17.5  | 7.97    | 2.60         | 11.5         | 11.4          | 2.05    | 0.56   | 2.62  | 0.48         | 3.91         | 1.11      | 4.03     | 0.65       | 4.32         | 0.80 | 0.35          | 0.79           |
| 37°41′S, 95°28′W  | 1500       | 148     | 24.1  | 9.89    | 3.06         | 13.1         | 14.0          | 2.14    | 0.61   | 3.27  | 0.54         | 4.54         | 1.33      | 5.02     | 0.84       | 5.30         | 1.02 | 0.36          | 0.73           |
| 3771 de a         | 2200       | 163     | 31.1  | 17.5    | 4.48         | 18.3         | 18.9          | 3.05    | 0.73   | 4.37  | 0.72         | 5.71         | 1.68      | 6.24     | 0.97       | 6.85         | 1.30 | 0.33          | 0.98           |

RR E /Nd a . Ce a 1 a Re (Ce/Ce<sup>\*</sup> = 2[Ce]/([La] + [P])) a d GEOTRACES | e<sup>1</sup>caRb a | ea e d (BATS) f  $\lambda$  d.

f  $\lambda e$  d d aRREE (Ha  $\lambda$  ) e e aR, 2012) de caR  $\lambda e$  c ) e i aRe e ed b a de FRe d  $e^{1}$  aR (2012).

2.2.3. Determination of nutrient concentrations Di Redi Rca e a d d da c c d a e e ea ed a dé AIR ed We d e l e B e e da dif R R a da d c ed e (G a d e aR, 1999).

3. RESULTS

de  $\lambda$ . Be ed a la eR 2000 a d 3000 de  $\lambda$ ,  $\lambda$ e c ea el  $\lambda$ e c c cd a la R ced f R 22 a d 66. T $\lambda$ e e a la el e ced b  $\lambda$ a d e a la RPac cede ed a e a  $\lambda$  de  $\lambda$  a e,  $\lambda$ e e Nd c cd a lo 30 l R a e e ced (Pe a d d Jac b d, 1988;  $\Lambda$  a a a el aR, 2004, 2009). T $\lambda$ e fac  $\lambda$ a  $\lambda$ e b e ed c cd a la e b 10 15 l R l R e a d ca e lo ced ca d ce e  $\lambda$ e e a la RPac ca d cedibeR (Sec 14.2.1).

3.4. Nd isotope compositions

The Nd ec friend R a efficiency of the algorithm of the sector of the s

The ac fhe a a e a e (LCDW ad

-9.0 0.3 (M C-78) a d -10.3 0.3 (M C-79) e ec  $\lambda e$ ad ec f e d aRNADW. T $\lambda e$  d e d ce f 1.3  $\varepsilon_{Nd}$ be ed  $\lambda e e$  al R a e R f la R e fac f  $\lambda$  a e a e d a  $\lambda e$  R ca f al R M C-79, a fe ed f ele a e  $\varepsilon_{Nd}$  a R ca ii eRa i R e d c c cd a a d  $\lambda \lambda e$  a a ii eRa i R e d c c d a a d  $\lambda \lambda e$  a a (e Table 1 a d F 11e, f a d 2b, c). F 6 d ca e  $\lambda a$  a a R M C 79 ( $\varepsilon_{Nd} = -10.25$ , [Nd] = 21.8 i R ) jifaR  $\lambda e$  i H e f LCDW a d NADW, d ca f a d n ADW e e a e

## 4.4. Sediment-bottom water interactions

4.4.1. Release of REEs from the sediments of the Southeast Pacific Basin

| I daea rei Reai Re                                           | fed e a          |
|--------------------------------------------------------------|------------------|
| fREE cal be f d a a b                                        | ae fres r-       |
| ea Pac c ba l zee al Re 9.3'                                 | 769 a 1 eRa 1 eR |
| λλ LREE cled and (e                                          | [Nd] = 39.1 $R$  |
| $(\mathbf{F} \cdot 3)$ . W $\lambda$ a c de lab $\mathbf{R}$ | d ca f re        |
| Nd e c (-                                                    |                  |

| fae e id-Ra | des a Pacc, éla Rolla de |
|-------------|--------------------------|
| ieRab R fNd | e a a e a acela e l.     |
| Vaa e e aR  | cc c e de ce rora e      |

| Gea | C. R., Ma , a   | а Т., | G ea, e | M. J.    | ERIe | eRd  | H. a.d |
|-----|-----------------|-------|---------|----------|------|------|--------|
| Ed  | d J. (1995) D 1 | Red   | a e ea  | in eRe e |      | ae S | 2e     |

- R be N. L., P A. M., McMa J. F. a d Ke I. L. D. (2010) S ca de Ricar e a d a e a
- d. d. (10.1029/2006GB002720. Sche H. D. a d. Ma E. E. (2004) C lc B he S he Ocea d helPaR d e fe edf e d. e h е.
- Earth Planet. Sci. Lett. 228, 391 405. Sta e G., H a abaRS., P. a O. a d Ra M. (2004) C R a d a ab R Ac CAR ba . Deep-Sea Res. I 51, 1367 1386.
- 51, 1367 1386.
  S ddaRM., Kλa i ala S., a dè FRe d T., J e K., G Rl el S. L., He S. a d A de R. F. (2008) T a d è R H ae Nd a ad e e i ble ca el l'a cea d è aR c ic R i ideR Earth Planet. Sci. Lett. 274, 448 461.
  SI a S. P., SI a S. K., G a V., Ba ad R. a d Ra V. K. (2012) S à aRd b f d Red e d a d <sub>KNd</sub> i ae Ba f Bd aRi Re f a ic Re a e a d f f c c c c Coochim Cosmochim Acta 94 38 56.
- a e \_ a e . Geochim. Cosmochim. Acta 94, 38. 56. 1 SR a B. M. a d R 1 RS. R. (2001) C ic R 1, d e aR a d d ca f A a c c \_ de a d e \_ ed a e \_ a e . J.
- Phys. Oceanogr. 31, 1005 1030. S'èzeRL, F a' M., Rìc RJ. a' d'HaR B. A. (2012) The hal a' d' e d' e c' f ea a e' he iA R' c'ec' f he S'hel Ocea. Earth Planet. Sci. Lett.
- $\begin{array}{c} 317-318, 282 \ 294.\\ S \quad 1 \ eRH. \ a \ dA \quad A. \ B. \ (1960) \ O \quad \lambda e \ ab \ 1 \ aRc \ c \ B \quad f \\ \lambda e \ 1 \ R \ c ea \quad I. \ S \ a \ a \ 1 \ R \ e \ a \quad a \ e \ a \end{array}$
- Alternative for the centre of the centre of
- Ta a a T., T a  $\lambda$  S., Ka a H., A a a a H., Ka a H., Ha a T., Y  $\lambda$ a a M., O  $\lambda$ a Y., Y | eda S., S $\lambda \rightarrow$  H., K | a T., Ta a  $\lambda$ a  $\lambda$  K., Ya a T., Na a T., F a H., S $\lambda$  R., A a  $\lambda$ a Y., Ta  $\rightarrow$  M. a d D a a C.

(2000) JNd-1: a e d c c efe d ce c d c a Láil Bal e d c Chem. Geol. 168, 279, 281. Ta R, S. R., McLei a, S. M. 1985. The C e d aRC : I C a d B R A E a a fre Ge creicaRRec28 -320.41T c J/F7 re e.